STE6
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPN4
Gene Ontology Biological Process
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter in response to stress [IMP]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to arsenic-containing substance [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to stress [IEP, IMP]
- regulation of DNA repair [IMP]
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins.
ER quality control (ERQC) prevents the exit of misfolded secretory and membrane proteins from the ER. A critical aspect of ERQC is a transcriptional response called the unfolded protein response (UPR), which up-regulates genes that enable cells to cope with misfolded, ER-retained proteins. In this study, we compare the transcriptional responses in yeast resulting from the acute expression of misfolded ... [more]
Throughput
- Low Throughput
Ontology Terms
- inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPN4 STE6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 3531943 | |
RPN4 STE6 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 3531941 |
Curated By
- BioGRID