BAIT

VMA6

H(+)-transporting V0 sector ATPase subunit d, L000002461, YLR447C
Subunit d of the V0 integral membrane domain of V-ATPase; part of the electrogenic proton pump found in the endomembrane system; required for V1 domain assembly on the vacuolar membrane; the V0 integral membrane domain of vacuolar H+-ATPase (V-ATPase) has five subunits
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

RAD52

recombinase RAD52, L000001572, YML032C
Protein that stimulates strand exchange; stimulates strand exchange by facilitating Rad51p binding to single-stranded DNA; anneals complementary single-stranded DNA; involved in the repair of double-strand breaks in DNA during vegetative growth and meiosis and UV induced sister chromatid recombination
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Genomic screening in vivo reveals the role played by vacuolar H+ ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin.

Liao C, Hu B, Arno MJ, Panaretou B

Screening the Saccharomyces cerevisiae homozygous diploid deletion library against a sublethal concentration of cisplatin revealed 76 strains sensitive to the drug. As expected, the largest category of deletions, representing 40% of the sensitive strains, was composed of strains lacking genes involved in DNA replication and damage repair. Deletions lacking function of the highly conserved vacuolar H+ translocating ATPase (V-ATPase) composed ... [more]

Mol. Pharmacol. Feb. 01, 2007; 71(2);416-25 [Pubmed: 17093137]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • cisplatin

Curated By

  • BioGRID