BAIT

RNR1

CRT7, RIR1, SDS12, ribonucleotide-diphosphate reductase subunit RNR1, L000001655, YER070W
Major isoform of large subunit of ribonucleotide-diphosphate reductase; the RNR complex catalyzes rate-limiting step in dNTP synthesis, regulated by DNA replication and DNA damage checkpoint pathways via localization of small subunits; relative distribution to the nucleus increases upon DNA replication stress; RNR1 has a paralog, RNR3, that arose from the whole genome duplication
GO Process (1)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

POL3

CDC2, HPR6, TEX1, DNA-directed DNA polymerase delta POL3, L000000242, YDL102W
Catalytic subunit of DNA polymerase delta; required for chromosomal DNA replication during mitosis and meiosis, intragenic recombination, repair of double strand DNA breaks, and DNA replication during nucleotide excision repair (NER)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Complex mutation profiles in mismatch repair and ribonucleotide reductase mutants reveal novel repair substrate specificity of MutS homolog (MSH) complexes.

Lamb NA, Bard JE, Loll-Krippleber R, Brown GW, Surtees JA

Determining mutation signatures is standard for understanding the etiology of human tumors and informing cancer treatment. Multiple determinants of DNA replication fidelity prevent mutagenesis that leads to carcinogenesis, including the regulation of free deoxyribonucleoside triphosphate pools by ribonucleotide reductase and repair of replication errors by the mismatch repair system. We identified genetic interactions between rnr1 alleles that skew and/or elevate ... [more]

Genetics Jul. 30, 2022; 221(4); [Pubmed: 35686905]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • Interactions were at or below the threshold z=-2
  • SGA

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RNR1 POL3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2526503

Curated By

  • BioGRID