BAIT

ASF1

CIA1, nucleosome assembly factor ASF1, L000000126, YJL115W
Nucleosome assembly factor; involved in chromatin assembly and disassembly, anti-silencing protein that causes derepression of silent loci when overexpressed; plays a role in regulating Ty1 transposition; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

NUP133

RAT3, L000002620, YKR082W
Subunit of Nup84p subcomplex of nuclear pore complex (NPC); contributes to nucleocytoplasmic transport, NPC biogenesis; is involved in establishment of a normal nucleocytoplasmic concentration gradient of GTPase Gsp1p; also plays roles in several processes that may require localization of genes or chromosomes at nuclear periphery, including double-strand break repair, transcription and chromatin silencing; relocalizes to cytosol in response to hypoxia; homolog of human NUP133
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A genetic interaction map centered on cohesin reveals auxiliary factors involved in sister chromatid cohesion in S. cerevisiae.

Ming Sun S, Batte A, Elmer M, van der Horst SC, van Welsem T, Bean G, Ideker T, van Leeuwen F, van Attikum H

Eukaryotic chromosomes are replicated in interphase and the two newly duplicated sister chromatids are held together by the cohesin complex and several cohesin auxiliary factors. Sister chromatid cohesion is essential for accurate chromosome segregation during mitosis, yet has also been implicated in other processes, including DNA damage repair, transcription and DNA replication. To assess how cohesin and associated factors functionally ... [more]

J Cell Sci Dec. 22, 2019; 133(10); [Pubmed: 32299836]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • Interactions had a S-score <-2.5

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ASF1 NUP133
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
456327

Curated By

  • BioGRID