ESR1
Gene Ontology Biological Process
- cellular response to estradiol stimulus [ISS]
- chromatin remodeling [NAS]
- gene expression [TAS]
- intracellular estrogen receptor signaling pathway [NAS]
- intracellular steroid hormone receptor signaling pathway [ISS]
- negative regulation of I-kappaB kinase/NF-kappaB signaling [IDA]
- negative regulation of gene expression [IDA]
- negative regulation of sequence-specific DNA binding transcription factor activity [IDA]
- phospholipase C-activating G-protein coupled receptor signaling pathway [ISS]
- positive regulation of cytosolic calcium ion concentration [ISS]
- positive regulation of nitric oxide biosynthetic process [IDA]
- positive regulation of nitric-oxide synthase activity [IDA]
- positive regulation of phospholipase C activity [ISS]
- positive regulation of retinoic acid receptor signaling pathway [IDA]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of transcription, DNA-templated [NAS]
- response to estradiol [IDA]
- response to estrogen [IDA]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- beta-catenin binding [IPI]
- chromatin binding [IDA]
- core promoter sequence-specific DNA binding [IDA]
- enzyme binding [IPI]
- estrogen receptor activity [NAS]
- estrogen response element binding [IDA]
- estrogen-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IGI]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [NAS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [NAS]
- steroid binding [ISS]
- steroid hormone receptor activity [TAS]
- transcription factor binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- beta-catenin binding [IPI]
- chromatin binding [IDA]
- core promoter sequence-specific DNA binding [IDA]
- enzyme binding [IPI]
- estrogen receptor activity [NAS]
- estrogen response element binding [IDA]
- estrogen-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IGI]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [NAS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [NAS]
- steroid binding [ISS]
- steroid hormone receptor activity [TAS]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
CALM1
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- G-protein coupled receptor signaling pathway [TAS]
- activation of phospholipase C activity [TAS]
- blood coagulation [TAS]
- carbohydrate metabolic process [TAS]
- detection of calcium ion [IMP]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- glucose metabolic process [TAS]
- glycogen catabolic process [TAS]
- innate immune response [TAS]
- inositol phosphate metabolic process [TAS]
- membrane organization [TAS]
- muscle contraction [TAS]
- negative regulation of peptidyl-threonine phosphorylation [TAS]
- negative regulation of ryanodine-sensitive calcium-release channel activity [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- nitric oxide metabolic process [TAS]
- phototransduction, visible light [TAS]
- platelet activation [TAS]
- platelet degranulation [TAS]
- positive regulation of cyclic nucleotide metabolic process [IDA]
- positive regulation of cyclic-nucleotide phosphodiesterase activity [IDA]
- positive regulation of peptidyl-threonine phosphorylation [TAS]
- positive regulation of phosphoprotein phosphatase activity [IDA]
- positive regulation of protein autophosphorylation [TAS]
- positive regulation of protein dephosphorylation [IDA]
- positive regulation of protein serine/threonine kinase activity [TAS]
- positive regulation of ryanodine-sensitive calcium-release channel activity [IDA]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC]
- regulation of cell communication by electrical coupling involved in cardiac conduction [IC]
- regulation of cytokinesis [IMP]
- regulation of heart rate [IMP]
- regulation of nitric-oxide synthase activity [TAS]
- regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IDA]
- regulation of rhodopsin mediated signaling pathway [TAS]
- response to calcium ion [IDA]
- rhodopsin mediated signaling pathway [TAS]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- substantia nigra development [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
A protein interaction landscape of breast cancer.
Cancers have been associated with a diverse array of genomic alterations. To help mechanistically understand such alterations in breast-invasive carcinoma, we applied affinity purification–mass spectrometry to delineate comprehensive biophysical interaction networks for 40 frequently altered breast cancer (BC) proteins, with and without relevant mutations, across three human breast cell lines. These networks identify cancer-specific protein-protein interactions (PPIs), interconnected and enriched ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| ESR1 CALM1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
| CALM1 ESR1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID