BAIT
KCTD9
BTBD27
potassium channel tetramerization domain containing 9
GO Process (0)
GO Function (0)
GO Component (0)
Homo sapiens
PREY
ALDOA
ALDA, GSD12, HEL-S-87p
aldolase A, fructose-bisphosphate
GO Process (16)
GO Function (8)
GO Component (9)
Gene Ontology Biological Process
- ATP biosynthetic process [IMP]
- actin filament organization [TAS]
- blood coagulation [TAS]
- carbohydrate metabolic process [TAS]
- fructose 1,6-bisphosphate metabolic process [IDA]
- fructose metabolic process [IMP]
- gluconeogenesis [TAS]
- glucose metabolic process [TAS]
- glycolytic process [IMP, TAS]
- muscle cell cellular homeostasis [IMP]
- platelet activation [TAS]
- platelet degranulation [TAS]
- protein homotetramerization [ISS]
- regulation of cell shape [IDA]
- small molecule metabolic process [TAS]
- striated muscle contraction [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
KCTD9 inhibits the Wnt/?-catenin pathway by decreasing the level of ?-catenin in colorectal cancer.
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. However, the molecular mechanisms underlying CRC progression remain to be further defined to improve patient outcomes. In this study, we found that KCTD9, a member of the potassium channel tetramerization domain-containing (KCTD) gene family, was commonly downregulated in CRC tissues and that KCTD9 expression was negatively correlated with ... [more]
Cell Death Dis Sep. 02, 2022; 13(9);761 [Pubmed: 36055981]
Throughput
- High Throughput
Curated By
- BioGRID