BAIT

DHH1

DExD/H-box ATP-dependent RNA helicase DHH1, L000000504, YDL160C
Cytoplasmic DExD/H-box helicase, stimulates mRNA decapping; coordinates distinct steps in mRNA function and decay, interacts with both the decapping and deadenylase complexes, role in translational repression, mRNA decay, and processing body dynamics; may have a role in mRNA export; C-terminus of Dhh1p interacts with Ngr1p and promotes POR1, but not EDC1 mRNA decay; forms cytoplasmic foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

PAT1

MRT1, L000001183, L000003214, YCR077C
Deadenylation-dependent mRNA-decapping factor; also required for faithful chromosome transmission, maintenance of rDNA locus stability, and protection of mRNA 3'-UTRs from trimming; associated with topoisomerase II; binds to mRNAs under glucose starvation, most often in the 3' UTR; functionally linked to Pab1p; forms cytoplasmic foci upon DNA replication stress; phosphorylation by PKA inhibits P body foci formation
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Stm1 modulates mRNA decay and Dhh1 function in Saccharomyces cerevisiae.

Balagopal V, Parker R

The control of mRNA degradation and translation are important for the regulation of gene expression. mRNA degradation is often initiated by deadenylation, which leads to decapping and 5'-3' decay. In the budding yeast Saccharomyces cerevisae, decapping is promoted by the Dhh1 and Pat1 proteins, which appear to both inhibit translation initiation and promote decapping. To understand the function of these ... [more]

Genetics Jan. 01, 2009; 181(1);93-103 [Pubmed: 19015546]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • Overexpression of STM1 in a PAT1/DHH1 mutant background is lethal

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PAT1 DHH1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
DHH1 PAT1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
DHH1 PAT1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
DHH1 PAT1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
PAT1 DHH1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
PAT1 DHH1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
PAT1 DHH1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High5BioGRID
3593563
DHH1 PAT1
Affinity Capture-RNA
Affinity Capture-RNA

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

High-BioGRID
2389241
DHH1 PAT1
Affinity Capture-RNA
Affinity Capture-RNA

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

High-BioGRID
-
DHH1 PAT1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
DHH1 PAT1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
1174193
DHH1 PAT1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
PAT1 DHH1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
DHH1 PAT1
Co-crystal Structure
Co-crystal Structure

Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex.

Low-BioGRID
-
PAT1 DHH1
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

High-BioGRID
-
DHH1 PAT1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
519629
PAT1 DHH1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3625426
DHH1 PAT1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2454786
PAT1 DHH1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2526601
PAT1 DHH1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
PAT1 DHH1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
PAT1 DHH1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
DHH1 PAT1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
1108938
DHH1 PAT1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
351625
PAT1 DHH1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
946675

Curated By

  • BioGRID