BAIT
STIP1
HEL-S-94n, HOP, IEF-SSP-3521, P60, STI1, STI1L
stress-induced phosphoprotein 1
GO Process (1)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
LONP1
LON, LONP, LonHS, PIM1, PRSS15, hLON
lon peptidase 1, mitochondrial
GO Process (8)
GO Function (12)
GO Component (5)
Gene Ontology Biological Process
- cellular response to oxidative stress [IC, IDA]
- mitochondrial DNA metabolic process [NAS]
- mitochondrial genome maintenance [NAS]
- mitochondrion organization [IMP]
- oxidation-dependent protein catabolic process [IMP]
- protein homooligomerization [IDA]
- proteolysis involved in cellular protein catabolic process [IDA]
- response to hypoxia [IEP]
Gene Ontology Molecular Function- ADP binding [IDA]
- ATP binding [IDA]
- ATP-dependent peptidase activity [IDA]
- DNA polymerase binding [IPI]
- G-quadruplex DNA binding [IDA]
- mitochondrial heavy strand promoter anti-sense binding [IDA]
- mitochondrial heavy strand promoter sense binding [IDA]
- mitochondrial light strand promoter anti-sense binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- single-stranded RNA binding [IDA]
- ADP binding [IDA]
- ATP binding [IDA]
- ATP-dependent peptidase activity [IDA]
- DNA polymerase binding [IPI]
- G-quadruplex DNA binding [IDA]
- mitochondrial heavy strand promoter anti-sense binding [IDA]
- mitochondrial heavy strand promoter sense binding [IDA]
- mitochondrial light strand promoter anti-sense binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding [IDA]
- single-stranded RNA binding [IDA]
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation.
Hop/Stip1/Sti1 is thought to be essential as a co-chaperone to facilitate substrate transfer between the Hsp70 and Hsp90 molecular chaperones. Despite this proposed key function for protein folding and maturation, it is not essential in a number of eukaryotes and bacteria lack an ortholog. We set out to identify and to characterize its eukaryote-specific function. Human cell lines and the ... [more]
Nat Commun Nov. 25, 2020; 11(1);5975 [Pubmed: 33239621]
Throughput
- High Throughput
Curated By
- BioGRID