RAD50
Gene Ontology Biological Process
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [TAS]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- meiotic nuclear division [IMP]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- negative regulation of endodeoxyribonuclease activity [IDA]
- telomere maintenance [IMP]
- telomere maintenance via recombination [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
POL3
Gene Ontology Biological Process
- DNA replication [IMP]
- DNA replication proofreading [IBA]
- DNA replication, removal of RNA primer [IDA]
- DNA-dependent DNA replication maintenance of fidelity [IGI]
- RNA-dependent DNA replication [IDA]
- base-excision repair, gap-filling [IBA]
- nucleotide-excision repair, DNA gap filling [IBA]
- regulation of mitotic cell cycle [IBA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Rescue
A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.
Publication
The pol3-t hyperrecombination phenotype and DNA damage-induced recombination in Saccharomyces cerevisiae is RAD50 dependent.
The DNA polymerase delta (POL3/CDC2) allele pol3-t of Saccharomyces cerevisiae has previously been shown to be sensitive to methylmethanesulfonate (MMS) and has been proposed to be involved in base excision repair. Our results, however, show that the pol3-t mutation is synergistic for MMS sensitivity with MAG1, a known base excision repair gene, but it is epistatic with rad50Delta, suggesting that ... [more]
Throughput
- Low Throughput
Ontology Terms
- viability (APO:0000111)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD50 POL3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5421 | BioGRID | 2066202 | |
POL3 RAD50 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2376772 | |
POL3 RAD50 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 160908 | |
POL3 RAD50 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 1518568 | |
POL3 RAD50 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158498 | |
RAD50 POL3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158499 |
Curated By
- BioGRID