RAD52
Gene Ontology Biological Process
- DNA amplification [IMP]
- DNA recombinase assembly [IDA]
- DNA strand renaturation [IDA]
- double-strand break repair via break-induced replication [IMP]
- double-strand break repair via homologous recombination [IMP]
- double-strand break repair via single-strand annealing [IGI]
- meiotic joint molecule formation [IGI, IMP]
- postreplication repair [IMP]
- telomere maintenance via recombination [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MRE11
Gene Ontology Biological Process
- DNA double-strand break processing involved in repair via synthesis-dependent strand annealing [IMP]
- DNA repair [IMP]
- ascospore formation [IMP]
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- reciprocal meiotic recombination [IMP]
- regulation of transcription during meiosis [IMP]
Gene Ontology Molecular Function- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Telomerase- and Rad52-independent immortalization of budding yeast by an inherited-long-telomere pathway of telomeric repeat amplification.
In the absence of telomerase, telomeres erode, provoking accumulation of DNA damage and death by senescence. Rare survivors arise, however, due to Rad52-based amplification of telomeric sequences by homologous recombination. The present study reveals that in budding yeast cells, postsenescence survival relying on amplification of the TG(1-3) telomeric repeats can take place in the absence of Rad52 when overelongated telomeres ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: viability (APO:0000111)
- phenotype: chromosome/plasmid maintenance (APO:0000143)
Additional Notes
- MRE11 leads to the death of tlc1{Delta} rad52{Delta} cells which have undergone the senescence process with overelongated telomeres
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MRE11 RAD52 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 3387836 | |
MRE11 RAD52 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | High | - | BioGRID | 339779 | |
MRE11 RAD52 | Positive Genetic Positive Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores. | High | 3.0359 | BioGRID | 585676 | |
RAD52 MRE11 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 426506 |
Curated By
- BioGRID