BAIT

LRO1

phospholipid:diacylglycerol acyltransferase, S000007453, YNR008W
Acyltransferase that catalyzes diacylglycerol esterification; one of several acyltransferases that contribute to triglyceride synthesis; Lro1p and Dga1p can O-acylate ceramides; putative homolog of human lecithin cholesterol acyltransferase
GO Process (3)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

SFB2

ISS1, COPII subunit SFB2, L000004658, YNL049C
Component of the Sec23p-Sfb2p heterodimer of the COPII vesicle coat; required for cargo selection during vesicle formation in ER to Golgi transport; homologous to Sfb3p; SFB2 has a paralog, SEC24, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death.

Garbarino J, Padamsee M, Wilcox L, Oelkers PM, D'Ambrosio D, Ruggles KV, Ramsey N, Jabado O, Turkish A, Sturley SL

Deletion of the acyltransferases responsible for triglyceride and steryl ester synthesis in Saccharomyces cerevisiae serves as a genetic model of diseases where lipid overload is a component. The yeast mutants lack detectable neutral lipids and cytoplasmic lipid droplets and are strikingly sensitive to unsaturated fatty acids. Expression of human diacylglycerol acyltransferase 2 in the yeast mutants was sufficient to reverse ... [more]

J. Biol. Chem. Nov. 06, 2009; 284(45);30994-1005 [Pubmed: 19690167]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SFB2 LRO1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
211564
LRO1 SFB2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.0851BioGRID
209300

Curated By

  • BioGRID