BAIT

MPH1

YIR002C
3'-5' DNA helicase involved in error-free bypass of DNA lesions; binds flap DNA in error-free bypass pathway, stimulates activity of Rad27p and Dna2p; prevents crossovers between ectopic sequences by removing substrates for Mus81-Mms4 or Rad1-Rad10 cleavage; similar to FANCM human Fanconi anemia complementation group protein that with MHF complex is involved in stabilizing and remodeling blocked replication forks; member of SF2 DExD/H superfamily of helicases
GO Process (4)
GO Function (2)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

MMS4

SLX2, YBR100W, YBR098W
Subunit of structure-specific Mms4p-Mus81p endonuclease; cleaves branched DNA; involved in recombination, DNA repair, and joint molecule formation/resolution during meiotic recombination; phosphorylation of the non-catalytic subunit Mms4p by Cdc28p and Cdc5p during mitotic cell cycle activates the function of Mms4p-Mus81p
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic evidence for a role of Saccharomyces cerevisiae Mph1 in recombinational DNA repair under replicative stress.

Panico ER, Ede C, Schildmann M, Schuerer KA, Kramer W

In yeast as in human, DNA helicases play critical roles in assisting replication fork progression. The Saccharomyces cerevisiae MPH1 gene, homologue of human FANCM, has been involved in homologous recombination and DNA repair. We describe a synthetic growth defect of an mph1 deletion if combined with an srs2 deletion that can result-depending on the genetic background-in synthetic lethality. The lethality ... [more]

Yeast Jan. 01, 2010; 27(1);11-27 [Pubmed: 19918932]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MMS4 MPH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2555BioGRID
2604884
MMS4 MPH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Low-0.2569BioGRID
560534
MMS4 MPH1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
156402
MPH1 MMS4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1524112

Curated By

  • BioGRID