XIAP
Gene Ontology Biological Process
- apoptotic process [TAS]
- cellular response to DNA damage stimulus [IEP]
- copper ion homeostasis [TAS]
- inhibition of cysteine-type endopeptidase activity involved in apoptotic process [IBA]
- intrinsic apoptotic signaling pathway [TAS]
- negative regulation of apoptotic process [IMP]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- positive regulation of canonical Wnt signaling pathway [IMP]
- positive regulation of protein linear polyubiquitination [IDA]
- positive regulation of protein ubiquitination [IDA]
- protein ubiquitination [IDA]
- regulation of BMP signaling pathway [TAS]
- regulation of cell proliferation [TAS]
- regulation of inflammatory response [TAS]
- regulation of innate immune response [TAS]
- regulation of nucleotide-binding oligomerization domain containing signaling pathway [TAS]
- spindle assembly involved in mitosis [IBA]
Gene Ontology Molecular Function
FLNA
Gene Ontology Biological Process
- actin crosslink formation [IDA]
- actin cytoskeleton reorganization [IDA]
- adenylate cyclase-inhibiting dopamine receptor signaling pathway [IMP]
- blood coagulation [TAS]
- cell junction assembly [TAS]
- cilium assembly [IMP]
- cytoplasmic sequestering of protein [IMP]
- establishment of protein localization [IDA]
- negative regulation of protein catabolic process [IMP]
- negative regulation of sequence-specific DNA binding transcription factor activity [IDA]
- platelet activation [TAS]
- platelet aggregation [IMP]
- platelet degranulation [TAS]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IMP]
- positive regulation of transcription factor import into nucleus [IMP]
- protein localization to cell surface [IDA]
- protein stabilization [IMP]
- receptor clustering [IDA]
- spindle assembly involved in mitosis [IDA]
Gene Ontology Molecular Function- Fc-gamma receptor I complex binding [IDA]
- Rac GTPase binding [IDA]
- Ral GTPase binding [IDA]
- Rho GTPase binding [IDA]
- actin filament binding [IDA]
- glycoprotein binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- signal transducer activity [IMP]
- small GTPase binding [IDA]
- transcription factor binding [IPI]
- Fc-gamma receptor I complex binding [IDA]
- Rac GTPase binding [IDA]
- Ral GTPase binding [IDA]
- Rho GTPase binding [IDA]
- actin filament binding [IDA]
- glycoprotein binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- signal transducer activity [IMP]
- small GTPase binding [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma.
Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific target protein substrates in order to alter their degradation rate, sub-cellular localization, interaction, and activity. The induction of apoptosis upon USP7 inhibition is well established in cancer containing wild type p53, which operates through the 'USP7-Mdm2-p53' axis. However, in cancers without functional p53, USP7-dependent ... [more]
Throughput
- High Throughput
Curated By
- BioGRID