YWHAE
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- apoptotic process [TAS]
- apoptotic signaling pathway [TAS]
- hippo signaling [TAS]
- intracellular signal transduction [TAS]
- intrinsic apoptotic signaling pathway [TAS]
- membrane organization [TAS]
- membrane repolarization during cardiac muscle cell action potential [IC]
- mitotic cell cycle [TAS]
- negative regulation of peptidyl-serine dephosphorylation [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway [TAS]
- regulation of cysteine-type endopeptidase activity involved in apoptotic process [TAS]
- regulation of heart rate by cardiac conduction [IC]
- regulation of heart rate by hormone [NAS]
- regulation of membrane repolarization [IDA]
- regulation of potassium ion transmembrane transporter activity [IDA]
- substantia nigra development [IEP]
Gene Ontology Molecular Function- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- histone deacetylase binding [IPI]
- ion channel binding [IPI]
- phosphoprotein binding [IPI]
- phosphoserine binding [IPI]
- poly(A) RNA binding [IDA]
- potassium channel regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- MHC class II protein complex binding [IDA]
- enzyme binding [IPI]
- histone deacetylase binding [IPI]
- ion channel binding [IPI]
- phosphoprotein binding [IPI]
- phosphoserine binding [IPI]
- poly(A) RNA binding [IDA]
- potassium channel regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
Gene Ontology Cellular Component
MAP3K10
Gene Ontology Biological Process
- JNK cascade [TAS]
- activation of JNKK activity [ISS]
- activation of JUN kinase activity [ISS]
- apoptotic process [TAS]
- negative regulation of sequence-specific DNA binding transcription factor activity [IMP]
- negative regulation of transcription, DNA-templated [IMP, ISS]
- peptidyl-serine phosphorylation [IDA]
- peptidyl-threonine phosphorylation [IDA]
- positive regulation of JNK cascade [IMP]
- positive regulation of JUN kinase activity [IMP]
- protein autophosphorylation [ISS]
- signal transduction [TAS]
- smoothened signaling pathway [IMP]
Gene Ontology Molecular Function
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
A central chaperone-like role for 14-3-3 proteins in human cells.
14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting ... [more]
Throughput
- High Throughput
Additional Notes
- BioID
- Interaction confidence score is 1 minus the Bayesian False Discovery Rate (BFDR) calculated from SAINT analysis. Interaction cutoff is BFDR <= 0.01 (confidence score >= 0.99)
- Interaction confidence score is 1 minus the Bayesian False Discovery Rate (BFDR) calculated from SAINT analysis. Interaction cutoff is BFDR <= 0.01 (confidence score >= 0.99)
- Vehicle control condition
- okadaic acid (serine/threonine phosphatases inhibition) condition
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MAP3K10 YWHAE | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID