BAIT

ENT2

YLR206W
Epsin-like protein required for endocytosis and actin patch assembly; functionally redundant with Ent1p; contains clathrin-binding motif at C-terminus; ENT2 has a paralog, ENT1, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

ENT1

YDL161W
Epsin-like protein involved in endocytosis and actin patch assembly; functionally redundant with Ent2p; binds clathrin via a clathrin-binding domain motif at C-terminus; relocalizes from bud neck to cytoplasm upon DNA replication stress; ENT1 has a paralog, ENT2, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (5)
Saccharomyces cerevisiae (S288c)

FRET

An interaction is inferred when close proximity of interaction partners is detected by fluorescence resonance energy transfer between pairs of fluorophore-labeled molecules, such as occurs between CFP (donor) and YFP (acceptor) fusion proteins.

Publication

The protein architecture of the endocytic coat analyzed by FRET microscopy.

Skruzny M, Pohl E, Gnoth S, Malengo G, Sourjik V

Endocytosis is a fundamental cellular trafficking pathway, which requires an organized assembly of the multiprotein endocytic coat to pull the plasma membrane into the cell. Although the protein composition of the endocytic coat is known, its functional architecture is not well understood. Here, we determine the nanoscale organization of the endocytic coat by FRET microscopy in yeast Saccharomyces cerevisiae. We ... [more]

Mol Syst Biol Dec. 01, 2019; 16(5);e9009 [Pubmed: 32400111]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ENT1 ENT2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High2BioGRID
3594251
ENT1 ENT2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.9447BioGRID
515674
ENT1 ENT2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.8588BioGRID
2091081
ENT2 ENT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.8806BioGRID
2152399
ENT1 ENT2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
606499
ENT1 ENT2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3322142
ENT1 ENT2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
645195
ENT1 ENT2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163538
ENT1 ENT2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3624568

Curated By

  • BioGRID