RTT109
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- histone acetylation [IDA, IGI, IMP]
- maintenance of rDNA [IGI]
- negative regulation of transposition, RNA-mediated [IMP]
- regulation of transcription from RNA polymerase II promoter in response to stress [IMP]
Gene Ontology Molecular Function
CSE2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae.
One of the key pathways for DNA double-stranded break (DSB) repair is the non-homologous end-joining (NHEJ) pathway, which directly re-ligates two broken ends of DNA. Using a plasmid repair assay screen, we identified that the deletion strain for RTT109 had a reduced efficiency for NHEJ in yeast. This deletion strain also had a reduced efficiency to repair induced chromosomal DSBs ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CSE2 RTT109 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.2347 | BioGRID | 221650 | |
CSE2 RTT109 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.1754 | BioGRID | 307871 | |
RTT109 CSE2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 300082 |
Curated By
- BioGRID