BAIT

RTT109

KIM2, REM50, H3 histone acetyltransferase RTT109, KAT11, L000003932, YLL002W
Histone acetyltransferase; critical for cell survival in the presence of DNA damage during S phase; prevents hyper-amplification of rDNA; acetylates H3-K56 and H3-K9; involved in non-homologous end joining and in regulation of Ty1 transposition; interacts physically with Vps75p
Saccharomyces cerevisiae (S288c)
PREY

SDC1

CPS25, SAF19, YDR469W
Subunit of the COMPASS (Set1C) complex; COMPASS methylates lysine 4 of histone H3 and is required in chromatin silencing at telomeres; contains a Dpy-30 domain that mediates interaction with Bre2p; similar to C. elegans and human DPY-30
GO Process (2)
GO Function (1)
GO Component (1)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae.

Jessulat M, Alamgir M, Salsali H, Greenblatt J, Xu J, Golshani A

One of the key pathways for DNA double-stranded break (DSB) repair is the non-homologous end-joining (NHEJ) pathway, which directly re-ligates two broken ends of DNA. Using a plasmid repair assay screen, we identified that the deletion strain for RTT109 had a reduced efficiency for NHEJ in yeast. This deletion strain also had a reduced efficiency to repair induced chromosomal DSBs ... [more]

Arch. Biochem. Biophys. Jan. 15, 2008; 469(2);157-64 [Pubmed: 18036332]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTT109 SDC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.344BioGRID
221262
SDC1 RTT109
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1659BioGRID
2429447
SDC1 RTT109
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.3222BioGRID
307859

Curated By

  • BioGRID