BAIT

YPT32

Rab family GTPase YPT32, L000002897, YGL210W
Rab family GTPase involved in the exocytic pathway; mediates intra-Golgi traffic or the budding of post-Golgi vesicles from the trans-Golgi; protein abundance increases in response to DNA replication stress; YPT32 has a paralog, YPT31, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

YPT31

YPT8, Rab family GTPase YPT31, L000002545, YER031C
Rab family GTPase; involved in the exocytic pathway; mediates intra-Golgi traffic or the budding of post-Golgi vesicles from the trans-Golgi; YPT31 has a paralog, YPT32, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway.

Sciorra VA, Audhya A, Parsons AB, Segev N, Boone C, Emr SD

Phosphorylated derivatives of phosphatidylinositol are essential regulators of both endocytic and exocytic trafficking in eukaryotic cells. In Saccharomyces cerevisiae, the phosphatidylinositol 4-kinase, Pik1p generates a distinct pool of PtdIns(4)P that is required for normal Golgi structure and secretory function. Here, we utilize a synthetic genetic array analysis of a conditional pik1 mutant to identify candidate components of the Pik1p/PtdIns(4)P signaling ... [more]

Mol. Biol. Cell Feb. 01, 2005; 16(2);776-93 [Pubmed: 15574876]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: protein transport (APO:0000129)

Additional Notes

  • double mutants cannot grow at 37 degrees and show golgi protein trafficking defects

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
YPT31 YPT32
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7297BioGRID
374748
YPT31 YPT32
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7807BioGRID
2107294
YPT32 YPT31
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-20.9744BioGRID
901293
YPT31 YPT32
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
255517
YPT31 YPT32
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
519352
YPT31 YPT32
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
514101
YPT31 YPT32
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
798167
YPT31 YPT32
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
159157

Curated By

  • BioGRID