BAIT
SFT2
L000002950, YBL102W
Tetra-spanning membrane protein found mostly in the late Golgi; non-essential; can suppress some sed5 alleles; may be part of the transport machinery, but precise function is unknown; similar to mammalian syntaxin 5
GO Process (1)
GO Function (0)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
CBF1
CEP1, CPF1, CP1, L000000311, L000000401, YJR060W
Basic helix-loop-helix (bHLH) protein; forms homodimer to bind E-box consensus sequence CACGTG present at MET gene promoters and centromere DNA element I (CDEI); affects nucleosome positioning at this motif; associates with other transcription factors such as Met4p and Isw1p to mediate transcriptional activation or repression; associates with kinetochore proteins, required for chromosome segregation; protein abundance increases in response to DNA replication stress
GO Process (8)
GO Function (8)
GO Component (5)
Gene Ontology Biological Process
- chromatin remodeling [IDA, IMP]
- chromosome segregation [IGI, IMP]
- negative regulation of ceramide biosynthetic process by negative regulation of transcription from RNA Polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of inositol biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of sulfate assimilation by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- regulation of transcription from RNA polymerase II promoter in response to methionine [IMP]
Gene Ontology Molecular Function- RNA polymerase II activating transcription factor binding [IMP, IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II repressing transcription factor binding [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IMP]
- centromeric DNA binding [IDA]
- sequence-specific DNA binding [IDA]
- RNA polymerase II activating transcription factor binding [IMP, IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II repressing transcription factor binding [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IMP]
- centromeric DNA binding [IDA]
- sequence-specific DNA binding [IDA]
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
The genetic landscape of a cell.
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, ... [more]
Science Jan. 22, 2010; 327(5964);425-31 [Pubmed: 20093466]
Quantitative Score
- -0.1431 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- A Synthetic Genetic Array (SGA) analysis was carried out to quantitatively score genetic interactions based on fitness defects that were estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an SGA score of epsilon > 0.08 for positive interactions and epsilon < -0.08 for negative interactions, and a p-value < 0.05.
Curated By
- BioGRID