MYC
Gene Ontology Biological Process
- MAPK cascade [IMP]
- Notch signaling pathway [TAS]
- branching involved in ureteric bud morphogenesis [ISS]
- canonical Wnt signaling pathway [IDA]
- cell cycle arrest [IDA]
- cellular iron ion homeostasis [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IEP]
- cellular response to drug [IDA]
- chromatin remodeling [IDA]
- chromosome organization [IDA]
- energy reserve metabolic process [NAS]
- fibroblast apoptotic process [TAS]
- gene expression [TAS]
- negative regulation of apoptotic process [ISS]
- negative regulation of cell division [IDA]
- negative regulation of fibroblast proliferation [IDA]
- negative regulation of monocyte differentiation [IMP]
- negative regulation of stress-activated MAPK cascade [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- oxygen transport [NAS]
- positive regulation of DNA biosynthetic process [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of fibroblast proliferation [IDA, IMP]
- positive regulation of mesenchymal cell proliferation [ISS]
- positive regulation of metanephric cap mesenchymal cell proliferation [ISS]
- positive regulation of response to DNA damage stimulus [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of gene expression [IDA]
- regulation of telomere maintenance [IMP]
- response to drug [IEP]
- response to gamma radiation [IDA]
- response to growth factor [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
HSPD1
Gene Ontology Biological Process
- 'de novo' protein folding [ISS]
- ATP catabolic process [ISS]
- B cell activation [IDA]
- B cell cytokine production [IDA]
- B cell proliferation [IDA]
- MyD88-dependent toll-like receptor signaling pathway [IDA]
- T cell activation [IDA]
- activation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- chaperone-mediated protein complex assembly [ISS]
- isotype switching to IgG isotypes [IDA]
- negative regulation of apoptotic process [IMP]
- positive regulation of T cell activation [IDA, ISS]
- positive regulation of T cell mediated immune response to tumor cell [IDA]
- positive regulation of apoptotic process [IMP]
- positive regulation of interferon-alpha production [IDA]
- positive regulation of interferon-gamma production [IDA, ISS]
- positive regulation of interleukin-10 production [IDA]
- positive regulation of interleukin-12 production [IDA]
- positive regulation of interleukin-6 production [IDA]
- positive regulation of macrophage activation [IDA]
- protein maturation [ISS]
- protein refolding [IDA]
- protein stabilization [IMP, ISS]
- response to unfolded protein [IDA]
Gene Ontology Molecular Function- ATPase activity [ISS]
- DNA replication origin binding [ISS]
- chaperone binding [IPI]
- double-stranded RNA binding [IDA]
- lipopolysaccharide binding [IDA]
- p53 binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- single-stranded DNA binding [ISS]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IC, ISS]
- ATPase activity [ISS]
- DNA replication origin binding [ISS]
- chaperone binding [IPI]
- double-stranded RNA binding [IDA]
- lipopolysaccharide binding [IDA]
- p53 binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- single-stranded DNA binding [ISS]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IC, ISS]
Gene Ontology Cellular Component
- cell surface [IDA]
- coated pit [IDA]
- coated vesicle [IDA]
- cyclin-dependent protein kinase activating kinase holoenzyme complex [IDA]
- cytoplasm [IDA]
- cytosol [IDA]
- early endosome [IDA]
- extracellular space [IDA]
- extracellular vesicular exosome [IDA]
- lipopolysaccharide receptor complex [IDA]
- membrane [IDA]
- mitochondrial inner membrane [ISS]
- mitochondrial matrix [TAS]
- mitochondrion [IDA]
- protein complex [IDA]
- secretory granule [ISS]
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
MYC multimers shield stalled replication forks from RNA polymerase.
Oncoproteins of the MYC family drive the development of numerous human tumours1. In unperturbed cells, MYC proteins bind to nearly all active promoters and control transcription by RNA polymerase II2,3. MYC proteins can also coordinate transcription with DNA replication4,5 and promote the repair of transcription-associated DNA damage6, but how they exert these mechanistically diverse functions is unknown. Here we show ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MYC HSPD1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
MYC HSPD1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
MYC HSPD1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3398563 |
Curated By
- BioGRID