BAIT

SEC2

guanine nucleotide exchange factor SEC2, L000001828, YNL272C
Guanyl-nucleotide exchange factor for the small G-protein Sec4p; essential for post-Golgi vesicle transport and for autophagy; associates with the exocyst, via exocyst subunit Sec15p, on secretory vesicles
GO Process (2)
GO Function (2)
GO Component (5)
Saccharomyces cerevisiae (S288c)
PREY

GDI1

SEC19, L000000699, YER136W
GDP dissociation inhibitor; regulates vesicle traffic in secretory pathways by regulating the dissociation of GDP from the Sec4/Ypt/rab family of GTP binding proteins
GO Process (1)
GO Function (1)
GO Component (0)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles.

Li X, Liu D, Griffis E, Novick P

Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport. To explore this possibility, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic ... [more]

Mol Biol Cell May. 01, 2023; 34(5);ar38 [Pubmed: 36857153]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC2 GDI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5562BioGRID
1950207
SEC2 GDI1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
162712

Curated By

  • BioGRID