BAIT

RNH201

RNH35, Rnh2A, L000004047, YNL072W
Ribonuclease H2 catalytic subunit; removes RNA primers during Okazaki fragment synthesis and errant ribonucleotides misincorporated during DNA replication; role in ribonucleotide excision repair; homolog of RNAse HI; related to human AGS4 which causes Aicardi-Goutieres syndrome
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

RTT109

KIM2, REM50, H3 histone acetyltransferase RTT109, KAT11, L000003932, YLL002W
Histone acetyltransferase; critical for cell survival in the presence of DNA damage during S phase; prevents hyper-amplification of rDNA; acetylates H3-K56 and H3-K9; involved in non-homologous end joining and in regulation of Ty1 transposition; interacts physically with Vps75p
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Genetic requirements for repair of lesions caused by single genomic ribonucleotides in S phase.

Schindler N, Tonn M, Kellner V, Fung JJ, Lockhart A, Vydzhak O, Juretschke T, Moeckel S, Beli P, Khmelinskii A, Luke B

Single ribonucleoside monophosphates (rNMPs) are transiently present in eukaryotic genomes. The RNase H2-dependent ribonucleotide excision repair (RER) pathway ensures error-free rNMP removal. In some pathological conditions, rNMP removal is impaired. If these rNMPs hydrolyze during, or prior to, S phase, toxic single-ended double-strand breaks (seDSBs) can occur upon an encounter with replication forks. How such rNMP-derived seDSB lesions are repaired ... [more]

Nat Commun Mar. 03, 2023; 14(1);1227 [Pubmed: 36869098]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • genetic complex
  • triple mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTT109 RNH201
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1241BioGRID
396579
RNH201 RTT109
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1218BioGRID
2168319

Curated By

  • BioGRID