BAIT

RAD5

REV2, SNM2, DNA helicase RAD5, L000001559, YLR032W
DNA helicase/Ubiquitin ligase; involved in error-free branch of DNA damage tolerance (DDT) pathway; proposed to promote replication fork regression during postreplication repair by template switching; stimulates synthesis of free and PCNA-bound polyubiquitin chains by Ubc13p-Mms2p; required for error-prone translesion synthesis; forms nuclear foci upon DNA replication stress; associates with native telomeres, cooperates with homologous recombination in senescent cells
Saccharomyces cerevisiae (S288c)
PREY

REV7

L000001618, YIL139C
Accessory subunit of DNA polymerase zeta; involved in translesion synthesis during post-replication repair; required for mutagenesis induced by DNA damage; involved in double-strand break repair; forms a complex with Rev3p, Pol31p and Pol32p
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Two independent DNA repair pathways cause mutagenesis in template switching deficient Saccharomyces cerevisiae.

Jiang YK, Medley EA, Brown GW

Upon DNA replication stress, cells utilize the post-replication repair pathway to repair single-stranded DNA and maintain genome integrity. Post-replication repair is divided into two branches: error-prone translesion synthesis, signaled by PCNA mono-ubiquitination, and error-free template switching, signaled by PCNA poly-ubiquitination. In Saccharomyces cerevisiae, Rad5 is involved in both branches of repair during DNA replication stress. When the PCNA poly-ubiquitination function ... [more]

Genetics Aug. 18, 2023; (); [Pubmed: 37594077]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD5 REV7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1247BioGRID
396947
REV7 RAD5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.199BioGRID
2133030
RAD5 REV7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1214BioGRID
2149294
RAD5 REV7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-4.9BioGRID
2359233

Curated By

  • BioGRID