BAIT
CTBP1
BARS
C-terminal binding protein 1
GO Process (11)
GO Function (7)
GO Component (3)
Gene Ontology Biological Process
- chromatin organization involved in regulation of transcription [IMP]
- negative regulation of cell proliferation [TAS]
- negative regulation of histone H4 acetylation [IMP]
- negative regulation of histone acetylation [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription, DNA-templated [ISS]
- positive regulation of histone deacetylation [IMP]
- protein phosphorylation [TAS]
- regulation of cell cycle [IMP]
- viral genome replication [TAS]
- white fat cell differentiation [ISS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
CALM2
CAMII, PHKD, PHKD2
calmodulin 2 (phosphorylase kinase, delta)
GO Process (43)
GO Function (11)
GO Component (13)
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- G-protein coupled receptor signaling pathway [TAS]
- activation of phospholipase C activity [TAS]
- blood coagulation [TAS]
- carbohydrate metabolic process [TAS]
- detection of calcium ion [IMP]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- glucose metabolic process [TAS]
- glycogen catabolic process [TAS]
- innate immune response [TAS]
- inositol phosphate metabolic process [TAS]
- membrane organization [TAS]
- muscle contraction [TAS]
- negative regulation of peptidyl-threonine phosphorylation [TAS]
- negative regulation of ryanodine-sensitive calcium-release channel activity [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- nitric oxide metabolic process [TAS]
- phototransduction, visible light [TAS]
- platelet activation [TAS]
- platelet degranulation [TAS]
- positive regulation of cyclic nucleotide metabolic process [IDA]
- positive regulation of cyclic-nucleotide phosphodiesterase activity [IDA]
- positive regulation of peptidyl-threonine phosphorylation [TAS]
- positive regulation of phosphoprotein phosphatase activity [IDA]
- positive regulation of protein autophosphorylation [TAS]
- positive regulation of protein dephosphorylation [IDA]
- positive regulation of protein serine/threonine kinase activity [TAS]
- positive regulation of ryanodine-sensitive calcium-release channel activity [IDA]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC]
- regulation of cell communication by electrical coupling involved in cardiac conduction [IC]
- regulation of cytokinesis [IMP]
- regulation of heart rate [IMP]
- regulation of nitric-oxide synthase activity [TAS]
- regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IDA]
- regulation of rhodopsin mediated signaling pathway [TAS]
- response to calcium ion [IDA]
- rhodopsin mediated signaling pathway [TAS]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- substantia nigra development [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
The CRL4DCAF6 E3 ligase ubiquitinates CtBP1/2 to induce apoptotic signalling and promote intervertebral disc degeneration.
Inflammation and apoptosis are two important pathological causes of intervertebral disc degeneration (IDD). The crosstalk between these two biological processes during IDD pathogenesis remains elusive. Herein, we discovered that chronic inflammation induced apoptosis through a cullin-RING E3 ligase (CRL)-dependent mechanism. Two cullin proteins, CUL4A and 4B, recruited DNA damage-binding protein 1 (DDB1), RING-box protein 1 (RBX1) and DDB1- and CUL4-associated ... [more]
J Mol Med (Berl) Feb. 01, 2023; 101(1-2);171-181 [Pubmed: 36688959]
Throughput
- High Throughput
Curated By
- BioGRID