BAIT

LRS4

L000004395, YDR439W
Nucleolar protein that forms a complex with Csm1p; and then Mam1p at kinetochores during meiosis I to mediate accurate homolog segregation; required for condensin recruitment to the replication fork barrier site and rDNA repeat segregation
GO Process (4)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

SMC4

condensin subunit SMC4, L000003472, YLR086W
Subunit of the condensin complex; condensin reorganizes chromosomes during both mitosis and meiosis; forms a subcomplex with Smc2p that has ATP-hydrolyzing and DNA-binding activity, but other condensin subunits are required for chromatin binding; required for tRNA gene clustering at the nucleolus; potential Cdc28p substrate
Saccharomyces cerevisiae (S288c)

Co-localization

Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.

Publication

Fob1-dependent condensin recruitment and loop extrusion on yeast chromosome III.

Dinda M, Fine RD, Saha S, Wang Z, Zang C, Li M, Smith JS

Despite recent advances in single-molecule and structural analysis of condensin activity in vitro, mechanisms of functional condensin loading and loop extrusion that lead to specific chromosomal organization remain unclear. In Saccharomyces cerevisiae, the most prominent condensin loading site is the rDNA locus on chromosome XII, but its repetitiveness deters rigorous analysis of individual genes. An equally prominent non-rDNA condensin site ... [more]

PLoS Genet Apr. 01, 2023; 19(4);e1010705 [Pubmed: 37058545]

Throughput

  • Low Throughput

Additional Notes

  • ChIP. Association is locus specific

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
LRS4 SMC4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3697BioGRID
2037164

Curated By

  • BioGRID