PREY
RPS3
S3, OK/SW-cl.26
ribosomal protein S3
GO Process (20)
GO Function (12)
GO Component (10)
Gene Ontology Biological Process
- DNA catabolic process, endonucleolytic [IBA, IDA]
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- cellular response to DNA damage stimulus [IEP]
- cytoplasmic translation [IBA]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- negative regulation of DNA repair [IMP]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- positive regulation of DNA N-glycosylase activity [IDA]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of apoptotic signaling pathway [IDA]
- translation [IC, NAS, TAS]
- translational elongation [TAS]
- translational initiation [NAS, TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function- DNA-(apurinic or apyrimidinic site) lyase activity [IDA]
- NF-kappaB binding [IPI]
- damaged DNA binding [IDA]
- enzyme binding [IPI]
- iron-sulfur cluster binding [NAS]
- mRNA binding [IDA]
- oxidized purine nucleobase lesion DNA N-glycosylase activity [IBA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase A binding [IPI]
- protein kinase binding [IPI]
- structural constituent of ribosome [IDA, NAS]
- DNA-(apurinic or apyrimidinic site) lyase activity [IDA]
- NF-kappaB binding [IPI]
- damaged DNA binding [IDA]
- enzyme binding [IPI]
- iron-sulfur cluster binding [NAS]
- mRNA binding [IDA]
- oxidized purine nucleobase lesion DNA N-glycosylase activity [IBA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase A binding [IPI]
- protein kinase binding [IPI]
- structural constituent of ribosome [IDA, NAS]
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation.
Cells use ubiquitin to mark proteins for proteasomal degradation. Although the proteasome also eliminates proteins that are not ubiquitinated, how this occurs mechanistically is unclear. Here, we found that midnolin promoted the destruction of many nuclear proteins, including transcription factors encoded by the immediate-early genes. Diverse stimuli induced midnolin, and its overexpression was sufficient to cause the degradation of its ... [more]
Science Aug. 25, 2023; 381(6660);eadh5021 [Pubmed: 37616343]
Throughput
- High Throughput
Additional Notes
- HA-tagged Midnolin expressed in HEK-293T cells treated with DMSO.
- HA-tagged Midnolin expressed in HEK-293T cells treated with the proteasome inhibitor MG132.
Curated By
- BioGRID