BAIT

RFC2

replication factor C subunit 2, L000001623, YJR068W
Subunit of heteropentameric Replication factor C (RF-C); RF-C is a DNA binding protein and ATPase that acts as a clamp loader of the proliferating cell nuclear antigen (PCNA) processivity factor for DNA polymerases delta and epsilon
Saccharomyces cerevisiae (S288c)
PREY

RFC1

CDC44, replication factor C subunit 1, L000000278, YOR217W
Subunit of heteropentameric Replication factor C (RF-C); RF-C is a DNA binding protein and ATPase that acts as a clamp loader of the proliferating cell nuclear antigen (PCNA) processivity factor for DNA polymerases delta and epsilon
GO Process (4)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

The social and structural architecture of the yeast protein interactome.

Michaelis AC, Brunner AD, Zwiebel M, Meier F, Strauss MT, Bludau I, Mann M

Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome ... [more]

Nature Nov. 15, 2023; (); [Pubmed: 37968396]

Quantitative Score

  • 10.0 [Score_FDR+correlation]

Throughput

  • High Throughput

Additional Notes

  • Protein interactions were identified using statistically significant enrichment of the proteins in the forward and reverse pull-downs, as well as making use of the profile similarities of interacting proteins in a correlation analysis. High confidence interactions have a total score >=2. This score is a sum of the FDR score of the forward pull-down + FDR score of the reverse pull-down + correlation score.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RFC1 RFC2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RFC1 RFC2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RFC2 RFC1
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
RFC2 RFC1
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
RFC2 RFC1
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
RFC2 RFC1
Co-purification
Co-purification

An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps.

Low-BioGRID
-
RFC1 RFC2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3537BioGRID
1953119
RFC2 RFC1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158650

Curated By

  • BioGRID