SGF29
Gene Ontology Biological Process
- cellular protein complex localization [IMP]
- cellular protein localization [IMP]
- heterochromatin organization involved in chromatin silencing [IMP]
- histone H3-K14 acetylation [IMP]
- histone H3-K18 acetylation [IMP]
- histone H3-K9 acetylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SUS1
Gene Ontology Biological Process
- histone H3-K4 methylation [IMP]
- histone H3-K79 methylation [IMP]
- histone deubiquitination [IMP]
- nuclear retention of pre-mRNA at the site of transcription [IMP]
- poly(A)+ mRNA export from nucleus [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP, IPI]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- regulation of protein localization [IMP]
- transcription elongation from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
The social and structural architecture of the yeast protein interactome.
Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome ... [more]
Quantitative Score
- 3.0 [Score_FDR+correlation]
Throughput
- High Throughput
Additional Notes
- Protein interactions were identified using statistically significant enrichment of the proteins in the forward and reverse pull-downs, as well as making use of the profile similarities of interacting proteins in a correlation analysis. High confidence interactions have a total score >=2. This score is a sum of the FDR score of the forward pull-down + FDR score of the reverse pull-down + correlation score.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SGF29 SUS1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 546152 | |
SUS1 SGF29 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 546302 | |
SUS1 SGF29 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
SUS1 SGF29 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
SUS1 SGF29 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1205 | BioGRID | 358265 | |
SUS1 SGF29 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1339 | BioGRID | 2081155 |
Curated By
- BioGRID