BAIT

GOS1

L000004085, YHL031C
v-SNARE protein involved in Golgi transport; homolog of the mammalian protein GOS-28/GS28
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)
PREY

SEC27

L000001848, YGL137W
Essential beta'-coat protein of the COPI coatomer; involved in ER-to-Golgi and Golgi-to-ER transport; contains WD40 domains that mediate cargo selective interactions; 45% sequence identity to mammalian beta'-COP
GO Process (3)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Ubiquitination drives COPI priming and Golgi SNARE localization.

Date SS, Xu P, Hepowit NL, Diab NS, Best J, Xie B, Du J, Strieter ER, Jackson LP, MacGurn JA, Graham TR

Deciphering mechanisms controlling SNARE localization within the Golgi complex is crucial to understanding protein trafficking patterns within the secretory pathway. SNAREs are also thought to prime coatomer protein I (COPI) assembly to ensure incorporation of these essential cargoes into vesicles, but the regulation of these events is poorly understood. Here, we report roles for ubiquitin recognition by COPI in SNARE ... [more]

Elife Jul. 29, 2022; 11(); [Pubmed: 35904239]

Throughput

  • High Throughput|Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GOS1 SEC27
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.8264BioGRID
208453
SEC27 GOS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
211280

Curated By

  • BioGRID