BAIT

RPD3

MOF6, REC3, SDI2, SDS6, histone deacetylase RPD3, L000001696, L000001603, YNL330C
Histone deacetylase, component of both the Rpd3S and Rpd3L complexes; regulates transcription, silencing, autophagy and other processes by influencing chromatin remodeling; forms at least two different complexes which have distinct functions and members; Rpd3(L) recruitment to the subtelomeric region is regulated by interaction with the arginine methyltransferase, Hmt1p
GO Process (19)
GO Function (3)
GO Component (6)
Saccharomyces cerevisiae (S288c)
PREY

HTZ1

HTA3, histone H2AZ, H2AZ, H2A.F/Z, L000003930, L000004094, YOL012C
Histone variant H2AZ; exchanged for histone H2A in nucleosomes by the SWR1 complex; involved in transcriptional regulation through prevention of the spread of silent heterochromatin; Htz1p-containing nucleosomes facilitate RNA Pol II passage by affecting correct assembly and modification status of RNA Pol II elongation complexes and by favoring efficient nucleosome remodeling
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The TORC1 activates Rpd3L complex to deacetylate Ino80 and H2A.Z and repress autophagy.

Li X, Mei Q, Yu Q, Wang M, He F, Xiao D, Liu H, Ge F, Yu X, Li S

Autophagy is a critical process to maintain homeostasis, differentiation, and development. How autophagy is tightly regulated by nutritional changes is poorly understood. Here, we identify chromatin remodeling protein Ino80 and histone variant H2A.Z as the deacetylation targets for histone deacetylase Rpd3L complex and uncover how they regulate autophagy in response to nutrient availability. Mechanistically, Rpd3L deacetylates Ino80 K929, which protects ... [more]

Sci Adv Mar. 10, 2023; 9(10);eade8312 [Pubmed: 36888706]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPD3 HTZ1
Biochemical Activity
Biochemical Activity

An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.

Low-BioGRID
3622450
HTZ1 RPD3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.8588BioGRID
223125
RPD3 HTZ1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3622451
HTZ1 RPD3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
517493
RPD3 HTZ1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
285369

Curated By

  • BioGRID