BAIT
RPA2
REPA2, RP-A p32, RP-A p34, RPA32, RP4-547C9.3
replication protein A2, 32kDa
GO Process (20)
GO Function (6)
GO Component (6)
Gene Ontology Biological Process
- DNA recombinase assembly [TAS]
- DNA repair [TAS]
- DNA replication [IDA, IMP, TAS]
- DNA strand elongation involved in DNA replication [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- base-excision repair [IDA]
- double-strand break repair [TAS]
- double-strand break repair via homologous recombination [IMP, TAS]
- mismatch repair [IMP]
- mitotic G1 DNA damage checkpoint [IMP]
- mitotic cell cycle [TAS]
- nucleotide-excision repair [IMP, TAS]
- nucleotide-excision repair, DNA damage removal [TAS]
- nucleotide-excision repair, DNA gap filling [TAS]
- regulation of DNA damage checkpoint [IMP]
- regulation of double-strand break repair via homologous recombination [IMP]
- telomere maintenance [IMP, TAS]
- telomere maintenance via recombination [TAS]
- telomere maintenance via semi-conservative replication [TAS]
- transcription-coupled nucleotide-excision repair [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
HSPA1A
HEL-S-103, HSP70-1, HSP70-1A, HSP70I, HSP72, HSPA1, DAQB-147D11.1
heat shock 70kDa protein 1A
GO Process (20)
GO Function (13)
GO Component (17)
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- RNA metabolic process [TAS]
- cellular heat acclimation [IMP]
- cellular response to heat [IDA]
- cellular response to oxidative stress [TAS]
- gene expression [TAS]
- mRNA catabolic process [IDA]
- mRNA metabolic process [TAS]
- negative regulation of apoptotic process [IMP, TAS]
- negative regulation of cell death [IDA, IMP]
- negative regulation of cell growth [IMP]
- negative regulation of cell proliferation [IMP]
- negative regulation of extrinsic apoptotic signaling pathway in absence of ligand [IMP]
- negative regulation of inclusion body assembly [IDA]
- negative regulation of protein ubiquitination [IDA]
- positive regulation of erythrocyte differentiation [IMP]
- protein refolding [IDA]
- protein stabilization [TAS]
- regulation of cell death [IMP]
- response to unfolded protein [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [IDA]
- G-protein coupled receptor binding [IPI]
- double-stranded RNA binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein binding involved in protein folding [IDA]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA, NAS, TAS]
- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [IDA]
- G-protein coupled receptor binding [IPI]
- double-stranded RNA binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein binding involved in protein folding [IDA]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA, NAS, TAS]
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- aggresome [IDA]
- blood microparticle [IDA]
- centriole [IDA]
- cytoplasm [IDA, TAS]
- cytosol [IDA, TAS]
- endoplasmic reticulum [TAS]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- inclusion body [IDA]
- mitochondrion [TAS]
- nuclear speck [IDA]
- nucleus [IDA]
- perinuclear region of cytoplasm [IDA]
- ribonucleoprotein complex [IDA]
- ubiquitin ligase complex [IDA]
- vesicle [IDA]
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability.
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA ... [more]
Cell Oct. 26, 2023; 186(22);4898-4919.e25 [Pubmed: 37827155]
Throughput
- High Throughput
Additional Notes
- >5 log2-fold enrichment and p value < 0.01 versus untransfected controls
- BioID
- HU treated HEK293T cells (7.5259 log2-fold enrichment)
- Untreated HEK293T cells (9.0302 log2-fold enrichment)
Curated By
- BioGRID