BAIT

SPO7

Nem1-Spo7 phosphatase regulatory subunit SPO7, L000002000, YAL009W
Putative regulatory subunit of Nem1p-Spo7p phosphatase holoenzyme; regulates nuclear growth by controlling phospholipid biosynthesis, required for normal nuclear envelope morphology, premeiotic replication, and sporulation
GO Process (2)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

RTN1

YDR233C
Reticulon protein; stabilizes membrane curvature; involved in nuclear pore assembly and maintenance of tubular ER morphology; mutant overexpressing RTN1 shows increase in tubular ER; interacts with exocyst subunit Sec6p, Yip3p, and Sbh1p; more abundant than Rtn2p; member of the RTNLA subfamily; mutants have reduced phosphatidylserine transfer between the ER and mitochondria; RTN1 has a paralog, RTN2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Identification of distinct active pools of yeast serine palmitoyltransferase in sub-compartments of the ER.

Esch BM, Walter S, Schmidt O, Froehlich F

Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism ... [more]

J Cell Sci Dec. 01, 2023; 136(23); [Pubmed: 37982431]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTN1 SPO7
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
353116

Curated By

  • BioGRID