BAIT
NRG1
transcriptional regulator NRG1, L000004598, YDR043C
Transcriptional repressor; recruits the Cyc8p-Tup1p complex to promoters; mediates glucose repression and negatively regulates a variety of processes including filamentous growth and alkaline pH response; activated in stochastic pulses of nuclear localization in response to low glucose
GO Process (9)
GO Function (5)
GO Component (1)
Gene Ontology Biological Process
- cellular hyperosmotic salinity response [IMP, IPI]
- negative regulation of cellular hyperosmotic salinity response by negative regulation of transcription from RNA polymerase II promoter [IGI]
- negative regulation of cellular response to alkaline pH by negative regulation of transcription from RNA polymerase II promoter [IMP, IPI]
- negative regulation of invasive growth in response to glucose limitation [IGI]
- negative regulation of invasive growth in response to glucose limitation by negative regulation of transcription from RNA polymerase II promoter [IGI]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter by glucose [IGI, IMP]
- pseudohyphal growth [IGI]
- single-species surface biofilm formation [IMP]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA, ISM]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IGI]
- sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA, ISM]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IGI]
- sequence-specific DNA binding [IDA]
Saccharomyces cerevisiae (S288c)
PREY
FLC1
BOP1, HUF1, L000004721, YPL221W
Putative FAD transporter; required for uptake of FAD into endoplasmic reticulum; involved in cell wall maintenance; FLC1 has a paralog, FLC3, that arose from the whole genome duplication
GO Process (3)
GO Function (1)
GO Component (4)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
The genetic landscape of a cell.
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, ... [more]
Science Jan. 22, 2010; 327(5964);425-31 [Pubmed: 20093466]
Quantitative Score
- -0.1651 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- A Synthetic Genetic Array (SGA) analysis was carried out to quantitatively score genetic interactions based on fitness defects that were estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an SGA score of epsilon > 0.08 for positive interactions and epsilon < -0.08 for negative interactions, and a p-value < 0.05.
Curated By
- BioGRID