UME6
Gene Ontology Biological Process
- chromatin remodeling [IMP]
- lipid particle organization [IMP]
- negative regulation of inositol biosynthetic process by negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter during meiosis [IMP]
- negative regulation of transcription from RNA polymerase II promoter during mitosis [IMP]
- nitrogen catabolite repression of transcription from RNA polymerase II promoter [IMP]
- positive regulation of meiosis by negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of meiosis by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylcholine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylserine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter during meiosis [IMP]
- pseudohyphal growth [IMP]
- spore germination [IMP]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- repressing transcription factor binding [IDA, IPI]
- sequence-specific DNA binding [IDA]
- transcription factor binding transcription factor activity [IGI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- repressing transcription factor binding [IDA, IPI]
- sequence-specific DNA binding [IDA]
- transcription factor binding transcription factor activity [IGI]
Gene Ontology Cellular Component
SOR2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Utilising established SDL-screening methods as a tool for the functional genomic characterisation of model and non-model organisms.
The trend for large-scale genetic and phenotypic screens has revealed a wealth of information on biological systems. A major challenge is understanding how genes function and putative roles in networks. The majority of current gene knowledge is garnered from studies utilising the model yeast Saccharomyces cerevisiae. We demonstrate that synthetic dosage lethal genetic array methodologies can be used to study ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- SGA score <-0.08
- overexpression of Ume6 causes growth defects with the hit gene deletion mutant
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SOR2 UME6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1848 | BioGRID | 2092643 |
Curated By
- BioGRID