ATP5A1
Gene Ontology Biological Process
- ATP biosynthetic process [IC, NAS]
- ATP catabolic process [IDA]
- cellular metabolic process [TAS]
- embryo development [ISS]
- lipid metabolic process [ISS]
- mitochondrial ATP synthesis coupled proton transport [IC, TAS]
- negative regulation of endothelial cell proliferation [IMP]
- respiratory electron transport chain [TAS]
- small molecule metabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ATP5F1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- extracellular vesicular exosome [IDA]
- membrane [IDA]
- mitochondrial inner membrane [TAS]
- mitochondrial matrix [NAS]
- mitochondrial proton-transporting ATP synthase complex [IDA]
- mitochondrial proton-transporting ATP synthase complex, coupling factor F(o) [IBA]
- mitochondrion [IDA]
- nucleoplasm [IDA]
- nucleus [IDA]
Cross-Linking-MS (XL-MS)
An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).
Publication
Protein interaction landscapes revealed by advanced in vivo cross-linking-mass spectrometry.
Defining protein-protein interactions (PPIs) in their native environment is crucial to understanding protein structure and function. Cross-linking-mass spectrometry (XL-MS) has proven effective in capturing PPIs in living cells; however, the proteome coverage remains limited. Here, we have developed a robust in vivo XL-MS platform to facilitate in-depth PPI mapping by integrating a multifunctional MS-cleavable cross-linker with sample preparation strategies and ... [more]
Throughput
- High Throughput
Additional Notes
- In vivo cross-linking-mass spectrometry (XL-MS) was carried out in HEK-293 cells using the cross-linking reagent Alkyne-A-DSBSO (Azide/Alkyne-tagged, acid-cleavable disuccinimidyl bissulfoxide). High confidence protein interactions were identified based on cross-linked peptides having an FDR < 1%.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ATP5A1 ATP5F1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 97.8 | BioGRID | 1524832 | |
ATP5F1 ATP5A1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9949 | BioGRID | 1177321 | |
ATP5F1 ATP5A1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9902 | BioGRID | 2241075 | |
ATP5F1 ATP5A1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9916 | BioGRID | 3127300 | |
ATP5A1 ATP5F1 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.7788 | BioGRID | 1259133 | |
ATP5A1 ATP5F1 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3676018 | |
ATP5F1 ATP5A1 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3745034 | |
ATP5A1 ATP5F1 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3736464 | |
ATP5F1 ATP5A1 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | - | |
ATP5F1 ATP5A1 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | 2787348 |
Curated By
- BioGRID