FLNA
Gene Ontology Biological Process
- actin crosslink formation [IDA]
- actin cytoskeleton reorganization [IDA]
- adenylate cyclase-inhibiting dopamine receptor signaling pathway [IMP]
- blood coagulation [TAS]
- cell junction assembly [TAS]
- cilium assembly [IMP]
- cytoplasmic sequestering of protein [IMP]
- establishment of protein localization [IDA]
- negative regulation of protein catabolic process [IMP]
- negative regulation of sequence-specific DNA binding transcription factor activity [IDA]
- platelet activation [TAS]
- platelet aggregation [IMP]
- platelet degranulation [TAS]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IMP]
- positive regulation of transcription factor import into nucleus [IMP]
- protein localization to cell surface [IDA]
- protein stabilization [IMP]
- receptor clustering [IDA]
- spindle assembly involved in mitosis [IDA]
Gene Ontology Molecular Function- Fc-gamma receptor I complex binding [IDA]
- Rac GTPase binding [IDA]
- Ral GTPase binding [IDA]
- Rho GTPase binding [IDA]
- actin filament binding [IDA]
- glycoprotein binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- signal transducer activity [IMP]
- small GTPase binding [IDA]
- transcription factor binding [IPI]
- Fc-gamma receptor I complex binding [IDA]
- Rac GTPase binding [IDA]
- Ral GTPase binding [IDA]
- Rho GTPase binding [IDA]
- actin filament binding [IDA]
- glycoprotein binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- signal transducer activity [IMP]
- small GTPase binding [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
PDIA3
Gene Ontology Biological Process
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- cellular protein metabolic process [TAS]
- post-translational protein modification [TAS]
- protein N-linked glycosylation via asparagine [TAS]
- protein folding [IBA, TAS]
- protein import into nucleus [TAS]
- protein retention in ER lumen [TAS]
- proteolysis [TAS]
- response to endoplasmic reticulum stress [IBA]
- signal transduction [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Cross-Linking-MS (XL-MS)
An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).
Publication
Protein interaction landscapes revealed by advanced in vivo cross-linking-mass spectrometry.
Defining protein-protein interactions (PPIs) in their native environment is crucial to understanding protein structure and function. Cross-linking-mass spectrometry (XL-MS) has proven effective in capturing PPIs in living cells; however, the proteome coverage remains limited. Here, we have developed a robust in vivo XL-MS platform to facilitate in-depth PPI mapping by integrating a multifunctional MS-cleavable cross-linker with sample preparation strategies and ... [more]
Throughput
- High Throughput
Additional Notes
- In vivo cross-linking-mass spectrometry (XL-MS) was carried out in HEK-293 cells using the cross-linking reagent Alkyne-A-DSBSO (Azide/Alkyne-tagged, acid-cleavable disuccinimidyl bissulfoxide). High confidence protein interactions were identified based on cross-linked peptides having an FDR < 1%.
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| PDIA3 FLNA | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.152 | BioGRID | 1262262 |
Curated By
- BioGRID