BAIT
EFT2
elongation factor 2, L000000544, YDR385W
Elongation factor 2 (EF-2), also encoded by EFT1; catalyzes ribosomal translocation during protein synthesis; contains diphthamide, the unique posttranslationally modified histidine residue specifically ADP-ribosylated by diphtheria toxin; EFT2 has a paralog, EFT1, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
DST1
PPR2, SII, S-II, TFIIS, P37, L000001476, L000000530, YGL043W
General transcription elongation factor TFIIS; enables RNA polymerase II to read through blocks to elongation by stimulating cleavage of nascent transcripts stalled at transcription arrest sites; maintains RNAPII elongation activity on ribosomal protein genes during conditions of transcriptional stress
GO Process (11)
GO Function (3)
GO Component (1)
Gene Ontology Biological Process
- mRNA cleavage [IDA, IMP]
- maintenance of transcriptional fidelity during DNA-templated transcription elongation from RNA polymerase II promoter [IGI, IMP]
- positive regulation of RNA polymerase II transcriptional preinitiation complex assembly [IDA, IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA]
- regulation of mRNA 3'-end processing [IGI, IMP]
- tRNA transcription from RNA polymerase III promoter [IMP]
- transcription antitermination [IDA]
- transcription elongation from RNA polymerase I promoter [IDA]
- transcription elongation from RNA polymerase II promoter [IDA, IMP]
- transcription from RNA polymerase III promoter [IDA]
- transcription initiation from RNA polymerase II promoter [IDA, IGI, IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
The genetic landscape of a cell.
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, ... [more]
Science Jan. 22, 2010; 327(5964);425-31 [Pubmed: 20093466]
Quantitative Score
- -0.1471 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- A Synthetic Genetic Array (SGA) analysis was carried out to quantitatively score genetic interactions based on fitness defects that were estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an SGA score of epsilon > 0.08 for positive interactions and epsilon < -0.08 for negative interactions, and a p-value < 0.05.
Curated By
- BioGRID