ERBB2
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- axon guidance [TAS]
- cell proliferation [TAS]
- cell surface receptor signaling pathway [IDA]
- enzyme linked receptor protein signaling pathway [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-tyrosine phosphorylation [IDA, IGI, TAS]
- phosphatidylinositol 3-kinase signaling [IDA]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of Rho GTPase activity [ISS]
- positive regulation of cell adhesion [IDA]
- positive regulation of cell growth [IMP]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of protein phosphorylation [ISS]
- positive regulation of transcription from RNA polymerase I promoter [IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of translation [IMP]
- protein autophosphorylation [IDA]
- protein phosphorylation [TAS]
- regulation of ERK1 and ERK2 cascade [IMP]
- regulation of angiogenesis [NAS]
- regulation of microtubule-based process [IDA]
- signal transduction [IDA]
- signal transduction by phosphorylation [TAS]
- transmembrane receptor protein tyrosine kinase signaling pathway [IDA, TAS]
- wound healing [IDA]
Gene Ontology Molecular Function- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
Gene Ontology Cellular Component
PARP1
Gene Ontology Biological Process
- DNA repair [TAS]
- cellular response to insulin stimulus [IDA]
- double-strand break repair [IMP]
- gene expression [TAS]
- macrophage differentiation [TAS]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- protein ADP-ribosylation [IDA]
- protein poly-ADP-ribosylation [IDA]
- transcription from RNA polymerase II promoter [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer.
Poly(ADP-ribose) polymerase 1 (PARP1) is essential for the progression of several types of cancers. However, whether and how PARP1 is stabilized to promote genomic stability in triple-negative breast cancer (TNBC) remains unknown. Here, we demonstrated that the deubiquitinase USP15 interacts with and deubiquitinates PARP1 to promote its stability, thereby stimulating DNA repair, genomic stability and TNBC cell proliferation. Two PARP1 ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| ERBB2 PARP1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID