FOXO4
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- cell cycle arrest [IDA]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [IDA]
- negative regulation of G0 to G1 transition [IDA]
- negative regulation of angiogenesis [IDA]
- negative regulation of cell proliferation [IDA]
- negative regulation of smooth muscle cell differentiation [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- phosphatidylinositol-mediated signaling [TAS]
- regulation of transcription from RNA polymerase II promoter [IBA]
- regulation of transcription, DNA-templated [IDA]
- stem cell differentiation [IMP]
- transcription from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function
CREBBP
Gene Ontology Biological Process
- N-terminal peptidyl-lysine acetylation [IDA]
- Notch signaling pathway [TAS]
- cellular lipid metabolic process [TAS]
- cellular response to hypoxia [TAS]
- chromatin organization [TAS]
- embryonic digit morphogenesis [TAS]
- gene expression [TAS]
- histone acetylation [IDA]
- homeostatic process [NAS]
- innate immune response [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA, ISS]
- positive regulation of type I interferon production [TAS]
- protein complex assembly [TAS]
- regulation of smoothened signaling pathway [TAS]
- regulation of transcription from RNA polymerase II promoter in response to hypoxia [TAS]
- regulation of transcription, DNA-templated [IDA, TAS]
- response to hypoxia [TAS]
- signal transduction [NAS]
- small molecule metabolic process [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function- MRF binding [IDA]
- RNA polymerase II activating transcription factor binding [TAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II transcription coactivator activity [TAS]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IDA]
- acetyltransferase activity [IDA]
- core promoter proximal region sequence-specific DNA binding [IDA]
- histone acetyltransferase activity [IDA]
- p53 binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- signal transducer activity [TAS]
- transcription coactivator activity [IDA, IPI]
- transcription factor binding [IPI]
- MRF binding [IDA]
- RNA polymerase II activating transcription factor binding [TAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II transcription coactivator activity [TAS]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IDA]
- acetyltransferase activity [IDA]
- core promoter proximal region sequence-specific DNA binding [IDA]
- histone acetyltransferase activity [IDA]
- p53 binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- signal transducer activity [TAS]
- transcription coactivator activity [IDA, IPI]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
- cytoplasm [IDA]
- nuclear body [IDA]
- nuclear chromatin [IDA]
- nucleoplasm [IDA, TAS]
- nucleus [IC, IDA]
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function.
MLL-AFX is a fusion gene created by t(X;11) chromosomal translocations in a subset of acute leukemias of either myeloid or lymphoid derivation. It codes for a chimeric protein consisting of MLL fused to AFX, a forkhead transcription factor that normally regulates genes involved in apoptosis and cell cycle progression. We demonstrate here that forced expression of MLL-AFX enhances the self-renewal ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
FOXO4 CREBBP | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
FOXO4 CREBBP | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
CREBBP FOXO4 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
CREBBP FOXO4 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - | |
CREBBP FOXO4 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID