TP53
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator [IDA, IMP]
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator [IMP]
- DNA strand renaturation [IDA]
- ER overload response [IDA]
- Notch signaling pathway [TAS]
- Ras protein signal transduction [IEP]
- apoptotic process [TAS]
- base-excision repair [TAS]
- blood coagulation [TAS]
- cell aging [IMP]
- cell cycle arrest [IDA, IMP]
- cell differentiation [TAS]
- cell proliferation [TAS]
- cellular protein localization [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IBA]
- cellular response to drug [IEP]
- cellular response to glucose starvation [IDA]
- cellular response to hypoxia [IEP]
- cellular response to ionizing radiation [IMP]
- chromatin assembly [IDA]
- determination of adult lifespan [ISS]
- intrinsic apoptotic signaling pathway [TAS]
- intrinsic apoptotic signaling pathway by p53 class mediator [IMP]
- intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator [IDA]
- mitotic G1 DNA damage checkpoint [IMP]
- multicellular organismal development [IMP]
- negative regulation of apoptotic process [IDA]
- negative regulation of cell growth [IMP]
- negative regulation of cell proliferation [ISS]
- negative regulation of fibroblast proliferation [IMP]
- negative regulation of helicase activity [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IBA, IDA, ISS]
- negative regulation of transcription, DNA-templated [ISS]
- nucleotide-excision repair [IMP]
- oligodendrocyte apoptotic process [IDA]
- oxidative stress-induced premature senescence [IMP]
- positive regulation of apoptotic process [IDA]
- positive regulation of cell cycle arrest [IMP]
- positive regulation of histone deacetylation [IBA]
- positive regulation of intrinsic apoptotic signaling pathway [IMP]
- positive regulation of neuron apoptotic process [IBA]
- positive regulation of peptidyl-tyrosine phosphorylation [ISS]
- positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway [TAS]
- positive regulation of protein oligomerization [IDA]
- positive regulation of reactive oxygen species metabolic process [IMP]
- positive regulation of release of cytochrome c from mitochondria [IDA]
- positive regulation of thymocyte apoptotic process [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of transcription, DNA-templated [IDA, IMP]
- protein complex assembly [IDA]
- protein localization [IDA]
- protein tetramerization [TAS]
- regulation of apoptotic process [IDA]
- regulation of mitochondrial membrane permeability [TAS]
- regulation of transcription, DNA-templated [IDA]
- replicative senescence [IMP]
- response to X-ray [IBA]
- response to antibiotic [IEP]
- response to gamma radiation [IMP]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [IMP]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chaperone binding [IPI]
- chromatin binding [IDA]
- copper ion binding [IDA]
- damaged DNA binding [IBA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- identical protein binding [IPI]
- p53 binding [IBA]
- protease binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein kinase binding [IPI]
- protein phosphatase 2A binding [IPI]
- protein phosphatase binding [IPI]
- receptor tyrosine kinase binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- zinc ion binding [TAS]
- ATP binding [IDA]
- DNA binding [IMP]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chaperone binding [IPI]
- chromatin binding [IDA]
- copper ion binding [IDA]
- damaged DNA binding [IBA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- identical protein binding [IPI]
- p53 binding [IBA]
- protease binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein kinase binding [IPI]
- protein phosphatase 2A binding [IPI]
- protein phosphatase binding [IPI]
- receptor tyrosine kinase binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- zinc ion binding [TAS]
Gene Ontology Cellular Component
CSNK2B
Gene Ontology Biological Process
- adiponectin-activated signaling pathway [IDA]
- axon guidance [TAS]
- cellular protein complex assembly [NAS]
- endothelial tube morphogenesis [IMP]
- mitotic cell cycle [TAS]
- negative regulation of blood vessel endothelial cell migration [IDA]
- negative regulation of cell proliferation [TAS]
- positive regulation of activin receptor signaling pathway [IMP]
- positive regulation of pathway-restricted SMAD protein phosphorylation [IDA]
- protein phosphorylation [TAS]
- regulation of DNA binding [NAS]
- regulation of protein kinase activity [NAS]
- signal transduction [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Genome-wide CRISPR screens identify novel regulators of wild-type and mutant p53 stability.
Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of ... [more]
Throughput
- High Throughput
Additional Notes
- BioID
- High confidence BioID interactions had a minimum unique mass spectral count of 2 and SAINT BFDR score =< 0.01
- MG132 proteasome inhibitor treatment
- TP53_R273H mutant
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| CSNK2B TP53 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 2533412 | |
| TP53 CSNK2B | PCA PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay. | High | - | BioGRID | 662332 |
Curated By
- BioGRID