RPS5
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- regulation of translational fidelity [IGI]
- translation [IC, IGI, NAS, TAS]
- translational elongation [TAS]
- translational initiation [IC, TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPL9
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- translation [NAS, TAS]
- translational elongation [TAS]
- translational initiation [TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Cross-Linking-MS (XL-MS)
An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).
Publication
Exploring an Alternative Cysteine-Reactive Chemistry to Enable Proteome-Wide PPI Analysis by Cross-Linking Mass Spectrometry.
The development of MS-cleavable cross-linking mass spectrometry (XL-MS) has enabled the effective capture and identification of endogenous protein-protein interactions (PPIs) and their residue contacts at the global scale without cell engineering. So far, only lysine-reactive cross-linkers have been successfully applied for proteome-wide PPI profiling. However, lysine cross-linkers alone cannot uncover the complete PPI map in cells. Previously, we have developed ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPL9 RPS5 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 1 | BioGRID | 742476 | |
RPS5 RPL9 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 1 | BioGRID | 1270354 | |
RPL9 RPS5 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | - |
Curated By
- BioGRID