SOD1
Gene Ontology Biological Process
- age-dependent response to reactive oxygen species involved in chronological cell aging [IMP]
- cellular copper ion homeostasis [IMP]
- cellular zinc ion homeostasis [IMP]
- fungal-type cell wall organization [IMP]
- negative regulation of cellular respiration [IMP]
- positive regulation of sequence-specific DNA binding transcription factor activity [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to oxidative stress [IMP]
- protein stabilization [IMP, IPI]
- removal of superoxide radicals [IBA]
- superoxide metabolic process [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MRE11
Gene Ontology Biological Process
- DNA double-strand break processing involved in repair via synthesis-dependent strand annealing [IMP]
- DNA repair [IMP]
- ascospore formation [IMP]
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- reciprocal meiotic recombination [IMP]
- regulation of transcription during meiosis [IMP]
Gene Ontology Molecular Function- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
DSB-induced oxidative stress: Uncovering crosstalk between DNA damage response and cellular metabolism.
While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: redox state (APO:0000218)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MRE11 SOD1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.8175 | BioGRID | 216662 | |
MRE11 SOD1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 457857 |
Curated By
- BioGRID