BAIT

PRE10

proteasome core particle subunit alpha 7, L000003146, YOR362C
Alpha 7 subunit of the 20S proteasome; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

RPN5

NAS5, proteasome regulatory particle lid subunit RPN5, L000004451, L000004305, YDL147W
Subunit of the CSN and 26S proteasome lid complexes; similar to mammalian p55 subunit and to another S. cerevisiae regulatory subunit, Rpn7p; Rpn5p is an essential protein; the COP9 signalosome is also known as the CSN
GO Process (2)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Cross-Linking-MS (XL-MS)

An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).

Publication

High-density chemical cross-linking for modeling protein interactions.

Mintseris J, Gygi SP

Detailed mechanistic understanding of protein complex function is greatly enhanced by insights from its 3-dimensional structure. Traditional methods of protein structure elucidation remain expensive and labor-intensive and require highly purified starting material. Chemical cross-linking coupled with mass spectrometry offers an alternative that has seen increased use, especially in combination with other experimental approaches like cryo-electron microscopy. Here we report advances ... [more]

Proc Natl Acad Sci U S A Jan. 07, 2020; 117(1);93-102 [Pubmed: 31848235]

Throughput

  • Low Throughput

Additional Notes

  • High confidence interactions were identified using the PIXL (Protein Interactions from Cross-Linking) algorithm and stringently filtered to 1% FDR.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPN5 PRE10
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High7BioGRID
3612874
RPN5 PRE10
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
PRE10 RPN5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.089BioGRID
442857
RPN5 PRE10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.089BioGRID
442858
PRE10 RPN5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3114BioGRID
1954393
RPN5 PRE10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2874BioGRID
1924229

Curated By

  • BioGRID