BAIT

RPN12

NIN1, proteasome regulatory particle lid subunit RPN12, L000001251, YFR052W
Subunit of the 19S regulatory particle of the 26S proteasome lid; synthetically lethal with RPT1, which is an ATPase component of the 19S regulatory particle; physically interacts with Nob1p and Rpn3p; protein abundance increases in response to DNA replication stress
GO Process (1)
GO Function (0)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

RPN2

SEN3, proteasome regulatory particle base subunit RPN2, L000001864, YIL075C
Subunit of the 26S proteasome; substrate of the N-acetyltransferase Nat1p; protein abundance increases in response to DNA replication stress
GO Process (2)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Cross-Linking-MS (XL-MS)

An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).

Publication

High-density chemical cross-linking for modeling protein interactions.

Mintseris J, Gygi SP

Detailed mechanistic understanding of protein complex function is greatly enhanced by insights from its 3-dimensional structure. Traditional methods of protein structure elucidation remain expensive and labor-intensive and require highly purified starting material. Chemical cross-linking coupled with mass spectrometry offers an alternative that has seen increased use, especially in combination with other experimental approaches like cryo-electron microscopy. Here we report advances ... [more]

Proc Natl Acad Sci U S A Jan. 07, 2020; 117(1);93-102 [Pubmed: 31848235]

Throughput

  • Low Throughput

Additional Notes

  • High confidence interactions were identified using the PIXL (Protein Interactions from Cross-Linking) algorithm and stringently filtered to 1% FDR.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPN2 RPN12
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
694336
RPN12 RPN2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPN2 RPN12
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RPN12 RPN2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High10BioGRID
3612587
RPN2 RPN12
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RPN12 RPN2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
160922
RPN12 RPN2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
162935

Curated By

  • BioGRID