BAIT
RNF10
RIE2
ring finger protein 10
GO Process (5)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Homo sapiens
PREY
FLNA
ABP-280, ABPX, CSBS, CVD1, FLN, FLN-A, FLN1, FMD, MNS, NHBP, OPD, OPD1, OPD2, XLVD, XMVD, XX-FW83128A1.1
filamin A, alpha
GO Process (19)
GO Function (12)
GO Component (10)
Gene Ontology Biological Process
- actin crosslink formation [IDA]
- actin cytoskeleton reorganization [IDA]
- adenylate cyclase-inhibiting dopamine receptor signaling pathway [IMP]
- blood coagulation [TAS]
- cell junction assembly [TAS]
- cilium assembly [IMP]
- cytoplasmic sequestering of protein [IMP]
- establishment of protein localization [IDA]
- negative regulation of protein catabolic process [IMP]
- negative regulation of sequence-specific DNA binding transcription factor activity [IDA]
- platelet activation [TAS]
- platelet aggregation [IMP]
- platelet degranulation [TAS]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IMP]
- positive regulation of transcription factor import into nucleus [IMP]
- protein localization to cell surface [IDA]
- protein stabilization [IMP]
- receptor clustering [IDA]
- spindle assembly involved in mitosis [IDA]
Gene Ontology Molecular Function- Fc-gamma receptor I complex binding [IDA]
- Rac GTPase binding [IDA]
- Ral GTPase binding [IDA]
- Rho GTPase binding [IDA]
- actin filament binding [IDA]
- glycoprotein binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- signal transducer activity [IMP]
- small GTPase binding [IDA]
- transcription factor binding [IPI]
- Fc-gamma receptor I complex binding [IDA]
- Rac GTPase binding [IDA]
- Ral GTPase binding [IDA]
- Rho GTPase binding [IDA]
- actin filament binding [IDA]
- glycoprotein binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- signal transducer activity [IMP]
- small GTPase binding [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
Protein-RNA
An interaction is detected between and protein and an RNA in vitro.
Publication
CircRNF10 triggers a positive feedback loop to facilitate progression of glioblastoma via redeploying the ferroptosis defense in GSCs.
Glioma exhibit heterogeneous susceptibility for targeted ferroptosis. How circRNAs alterations in glioma promote iron metabolism and ferroptosis defense remains unclarified.The highly enriched circRNAs in glioblastoma (GBM) were obtained through analysis of sequencing datasets. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circRNF10 in glioma and normal brain tissue. Both gain-of-function and loss-of-function studies were used to assess ... [more]
J Exp Clin Cancer Res Sep. 19, 2023; 42(1);242 [Pubmed: 37723588]
Throughput
- High Throughput
Additional Notes
- Bait is circRNF10
Curated By
- BioGRID