BAIT

SGS1

ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

HTB1

SPT12, histone H2B, L000000829, YDR224C
Histone H2B; core histone protein required for chromatin assembly and chromosome function; nearly identical to HTB2; Rad6p-Bre1p-Lge1p mediated ubiquitination regulates reassembly after DNA replication, transcriptional activation, meiotic DSB formation and H3 methylation
GO Process (3)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Multifaceted roles of H2B mono-ubiquitylation in D-loop metabolism during homologous recombination repair.

Hung SH, Liang Y, Heyer WD

Repairing DNA double-strand breaks is crucial for maintaining genome integrity, which occurs primarily through homologous recombination (HR) in Saccharomyces cerevisiae. Nucleosomes, composed of DNA wrapped around a histone octamer, present a natural barrier to end resection to initiate HR, but the impact on the downstream HR steps of homology search, DNA strand invasion, and repair synthesis remain to be determined. ... [more]

Nucleic Acids Res Feb. 08, 2025; 53(4); [Pubmed: 39945322]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: chromosome/plasmid maintenance (APO:0000143)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HTB1 SGS1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2382347
HTB1 SGS1
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3770017
HTB1 SGS1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2382340
SGS1 HTB1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High0.0075BioGRID
822770

Curated By

  • BioGRID