BAIT

DSN1

MIND complex subunit DSN1, L000004645, YIR010W
Essential component of the MIND kinetochore complex; joins kinetochore subunits contacting DNA to those contacting microtubules; phosphorylation of Dsn1p promotes interaction between outer and inner kinetochore proteins; N-terminal end interacts with monopolin subunit Csm1p and is essential for meiotic but not mitotic chromosome segregation; important for chromosome segregation; complex consists of Mtw1p Including Nnf1p-Nsl1p-Dsn1p (MIND); modified by sumoylation
GO Process (2)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

RPT5

YTA1, proteasome regulatory particle base subunit RPT5, L000002555, YOR117W
ATPase of the 19S regulatory particle of the 26S proteasome; one of six ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; recruited to the GAL1-10 promoter region upon induction of transcription; similar to human TBP1
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Analysis of a cancer-associated mutation in the budding yeast Nuf2 kinetochore protein.

Andrade Latino A, Biggins S

The kinetochore is a highly conserved megadalton protein complex that ensures proper chromosome segregation via microtubule attachments. The NDC80 complex is one of the major conserved microtubule binding complexes in the kinetochore. NUF2, a protein within the NDC80 complex, has been identified as a cancer gene candidate because missense mutations, found across different tumor samples, cluster within NUF2's calponin homology ... [more]

MicroPubl Biol Mar. 31, 2025; 2025(); [Pubmed: 40161439]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPT5 DSN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2243BioGRID
1952211

Curated By

  • BioGRID