ESA1
Gene Ontology Biological Process
- DNA repair [IDA, IMP]
- DNA-templated transcription, elongation [IDA, IMP]
- chromatin organization involved in regulation of transcription [IMP]
- chromatin silencing at rDNA [IGI, IMP]
- histone acetylation [IDA]
- peptidyl-lysine acetylation [IMP]
- positive regulation of macroautophagy [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IGI, IMP]
- regulation of cell cycle [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
GCN5
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Histone Acetyltransferases Gcn5 and Esa1 Regulate Occupancy of RSC to Maintain Nucleosome-Depleted Regions and Promote RSC Recruitment to Coding Regions Genome-Wide in Saccharomyces cerevisiae.
Chromatin remodelers are important for maintaining chromatin structure and regulating gene expression. In this study, we investigated the roles of histone acetyltransferases (HATs) Gcn5 and Esa1 in regulating RSC and histone occupancy on chromatin, as well as their impact on transcription across the genome. Our findings reveal distinct effects of HATs on RSC occupancy in promoters and ORFs. The lack ... [more]
Throughput
- Low Throughput
Ontology Terms
- chromosome/plasmid maintenance (APO:0000143)
- protein/peptide distribution (APO:0000209)
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| GCN5 ESA1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 349762 | |
| ESA1 GCN5 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 3561248 | |
| GCN5 ESA1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 349761 | |
| ESA1 GCN5 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low/High | - | BioGRID | 265597 | |
| ESA1 GCN5 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 284781 | |
| GCN5 ESA1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 285043 | |
| ESA1 GCN5 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 574064 |
Curated By
- BioGRID