PRKACA
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- activation of phospholipase C activity [TAS]
- activation of protein kinase A activity [TAS]
- blood coagulation [TAS]
- calcium-mediated signaling using intracellular calcium source [TAS]
- carbohydrate metabolic process [TAS]
- cell communication by electrical coupling involved in cardiac conduction [TAS]
- cellular response to epinephrine stimulus [TAS]
- cellular response to glucagon stimulus [TAS]
- cellular response to glucose stimulus [IDA]
- cytosolic calcium ion homeostasis [TAS]
- energy reserve metabolic process [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- gluconeogenesis [TAS]
- glucose metabolic process [TAS]
- innate immune response [TAS]
- intracellular signal transduction [TAS]
- mitotic cell cycle [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of cell cycle arrest [ISS]
- protein phosphorylation [NAS]
- regulation of cardiac muscle contraction [TAS]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [TAS]
- regulation of heart rate [TAS]
- regulation of insulin secretion [TAS]
- regulation of osteoblast differentiation [IDA]
- regulation of proteasomal protein catabolic process [IDA]
- regulation of protein binding [TAS]
- regulation of ryanodine-sensitive calcium-release channel activity [TAS]
- regulation of tight junction assembly [IDA]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- sperm capacitation [ISS]
- transmembrane transport [TAS]
- triglyceride catabolic process [TAS]
- water transport [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
HDAC1
Gene Ontology Biological Process
- ATP-dependent chromatin remodeling [IDA]
- Notch signaling pathway [TAS]
- blood coagulation [TAS]
- chromatin modification [TAS]
- chromatin remodeling [IC]
- circadian regulation of gene expression [ISS]
- embryonic digit morphogenesis [ISS]
- epidermal cell differentiation [ISS]
- eyelid development in camera-type eye [ISS]
- fungiform papilla formation [ISS]
- gene expression [TAS]
- hair follicle placode formation [ISS]
- histone H3 deacetylation [IDA]
- histone H4 deacetylation [IDA]
- histone deacetylation [IMP]
- mitotic cell cycle [TAS]
- negative regulation by host of viral transcription [IMP]
- negative regulation of androgen receptor signaling pathway [IDA]
- negative regulation of apoptotic process [ISS]
- negative regulation of cell cycle [TAS]
- negative regulation of myotube differentiation [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- negative regulation of transcription, DNA-templated [IMP, ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- odontogenesis of dentin-containing tooth [ISS]
- positive regulation of cell proliferation [IMP]
- positive regulation of receptor biosynthetic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- protein deacetylation [IDA]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription corepressor activity [IDA]
- activating transcription factor binding [IPI]
- core promoter binding [IDA]
- deacetylase activity [ISS]
- enzyme binding [IPI]
- histone deacetylase activity [IDA, IMP, TAS]
- histone deacetylase binding [IPI]
- nucleosomal DNA binding [IDA]
- protein binding [IPI]
- protein deacetylase activity [IDA, IMP]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI, TAS]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [ISS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription corepressor activity [IDA]
- activating transcription factor binding [IPI]
- core promoter binding [IDA]
- deacetylase activity [ISS]
- enzyme binding [IPI]
- histone deacetylase activity [IDA, IMP, TAS]
- histone deacetylase binding [IPI]
- nucleosomal DNA binding [IDA]
- protein binding [IPI]
- protein deacetylase activity [IDA, IMP]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI, TAS]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [ISS]
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
PKA plays a conserved role in regulating gene expression and metabolic adaptation by phosphorylating Rpd3/HDAC1.
Cells need to reprogram their metabolism to adapt to extracellular nutrient changes. The yeast histone acetyltransferase SAGA (Spt-Ada-Gcn5-acetyltransferase) has been reported to acetylate its subunit Ada3 and form homo-dimers to enhance its ability to acetylate nucleosomes and facilitate metabolic gene transcription. How cells transduce extracellular nutrient changes to SAGA structure and function changes remains unclear. Here, we found that SAGA ... [more]
Throughput
- High Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HDAC1 PRKACA | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | High | - | BioGRID | - | |
| PRKACA HDAC1 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 506439 | |
| PRKACA HDAC1 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 607315 |
Curated By
- BioGRID