MSN2
Gene Ontology Biological Process
- age-dependent response to oxidative stress involved in chronological cell aging [IGI]
- cellular response to blue light [IDA]
- cellular response to methylmercury [IGI, IMP]
- chromatin remodeling [IGI]
- positive regulation of transcription from RNA polymerase II promoter [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to a hypotonic environment [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to acidic pH [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to alkaline pH [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to amino acid starvation [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to arsenic-containing substance [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to cold [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to ethanol [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to freezing [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to glucose starvation [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to heat stress [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to hydrogen peroxide [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to hydrostatic pressure [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to increased salt [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to nitrosative stress [IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to zinc ion starvation [IGI]
- regulation of replicative cell aging by regulation of transcription from RNA polymerase II promoter in response to caloric restriction [IGI]
- replicative cell aging [IGI]
Gene Ontology Molecular Function
RPS4B
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
The genetic landscape of a cell.
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, ... [more]
Quantitative Score
- -0.1457 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- A Synthetic Genetic Array (SGA) analysis was carried out to quantitatively score genetic interactions based on fitness defects that were estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an SGA score of epsilon > 0.08 for positive interactions and epsilon < -0.08 for negative interactions, and a p-value < 0.05.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MSN2 RPS4B | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1674 | BioGRID | 2161256 |
Curated By
- BioGRID